72886必赢欢迎光临-首页
首页
首页» 师资队伍
 

杜飞飞

作者:         发布日期:2024-06-07     浏览次数:

     

一. 基本信息

杜飞飞,男, 山西吕梁人,中共党员,副教授,硕士生导师。

学习教育经历:

2018年6月获得博士学位,2013年3月获得硕士学位,2010年7月获得学士学位。

2016年9月到2017年8月在美国内布拉斯加大学林肯分校访学一年。

工作及任职经历:

2018年7月至2022年8月在上海交通大学自动化系做博士后研究工作。

2022年9月至今在72886必赢工作。

二. 研究领域

1.分数阶神经网络有限时间控制

2. 离散时间分数阶系统的稳定性

三. 开设课程

高等数学、数学分析、常微分方程

四. 科研项目与学术成果

科研项目

【在研项目】

1. 陕西数理基础科学研究项目                  主持

2. 72886必赢引进人才科研启动项目      主持

3. 国家自然科学基金联合基金项目              参与

4. 国家自然科学基金面上项目                  参与 

【结题项目】

1. 中国博士后面上项目                        主持

2. 国家自然科学基金青年项目                  参与 

3. 中央高校基本科研业务费(数理专项)项目    主持

学术成果

近年来在IEEE Transactions on Neural Networks and Learning Systems、IEEE Transactions on Fuzzy Systems、Information Sciences、Fuzzy Sets and Systems、Communications in Nonlinear Science and Numerical Simulation等国内外著名期刊发表学术论文30余篇,其中3篇入选ESI高被引论文。

发表论文目录:

(1) Feifei Du, Jun-Guo Lu, Qing-Hao Zhang, Practical finite-time synchronization of delayed fuzzy cellular neural networks with fractional-order,Information Sciences, 667 (2024) , 120457.

(2) Feifei Du, Jun-Guo Lu, Novel methods of finite-time synchronization of fractional-order delayed memristor-based Cohen–Grossberg neural networks,Nonlinear Dynamics, 111(2023),18985–19001.

(3) Feifei Du, Jun-Guo Lu, Qing-Hao Zhang, Delay-dependent finite-time synchronization criterion of fractional-order delayed complex networks, Communications in Nonlinear Science and Numerical Simulation, 119 (2023), 107072.

(4) Feifei Du, Jun-Guo Lu, Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks, Fuzzy Sets and Systems, 466(2023), 108480.

(5) Feifei Du, Jun-Guo Lu, Improved quasi-uniform stability criterion of fractional-order neural networks with discrete and distributed delays, Asian Journal of Control, 25 (2023), 229–240.

(6) Feifei Du, Jun-Guo Lu, Some remarks on the Gronwall integral inequality, Mathematical Methods in Applied Sciences, 46 (2) (2023), 2997-3003.

(7) Feifei Du, Jun-Guo Lu, Finite-time synchronization of fractional-order delayed fuzzy cellular neural networks with parameter uncertainties, IEEE Transactions on Fuzzy Systems, 31 (6) (2023), 1769-1779.

(8) Feifei Du, Jun-Guo Lu, Finite-time stability of fractional-order fuzzy cellular neural networks with time delays, Fuzzy Sets and Systems, 438 (2022), 107-120. (ESI高被引)

(9) Feifei Du, Jun-Guo Lu, Exploring a new discrete delayed Mittag-Leffler matrix function to investigate finite-time stability of Riemann-Liouville fractional-order delay difference systems, Mathematical Methods in Applied Sciences, 45 (16) (2022), 9856-9878.

(10) Feifei Du, Jun-Guo Lu, New results on finite-time stability of fractional-order Cohen-Grossberg neural networks with time delays, Asian Journal of Control, 24 (2022), 2328-2337.

(11) Feifei Du, Jun-Guo Lu, Finite-time stability of fractional-order delayed Cohen-Grossberg memristive neural networks: a novel fractional-order delayed Gronwall inequality approach, International Journal of General Systems, 51 (1) (2022), 27-53.

(12) Feifei Du, Jun-Guo Lu, New criteria on finite-time stability of fractional-order Hopfield neural networks with time delays, IEEE Transactions on Neural Networks and Learning Systems, 32 (9) (2021), 3858-3866.

(13) Feifei Du, Jun-Guo Lu, New criteria for finite-time stability of fractional order memristor-based neural networks with time delays, Neurocomputing, 421(2021), 349-359.

(14) Feifei Du, Jun-Guo Lu, New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay, Applied Mathematics and Computation, 389 (2021), 125616. (ESI高被引)

(15) Feifei Du, Jun-Guo Lu, New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays, Chaos, Solitons & Fractals, 151(2021), 111225.

(16) Feifei Du, Jun-Guo Lu, Explicit solutions and asymptotic behaviors of Caputo discrete fractional-order equations with variable coefficients, Chaos, Solitons & Fractals, 153(2021), 111490.

(17) Feifei Du, Baoguo Jia, A generalized fractional (q, h)-Gronwall inequality and its applications to nonlinear fractional delay (q, h)-difference systems, Mathematical Methods in Applied Science, 44 (2021) 10513-10529.

(18)Feifei Du, Jun-Guo Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities,  Applied Mathematics and Computation, 375 (2020), 125079. (ESI高被引)

(19)Feifei Du, Baoguo Jia, Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach, Chaos, Solitons & Fractals, 141(2020), 114430.

(20) Feifei Du, Jun-Guo Lu, New criterion for finite-time stability of fractional delay systems, Applied Mathematics Letters, 104 (2020), 106248.

(21) Feifei Du, Baoguo Jia, Finite-time stability of nonlinear fractional order systems with a constant delay, Journal of Nonlinear Modeling and Analysis, 2(1) (2020), 1-13.

(22) Feifei Du, Baoguo Jia, Finite-time stability of a class of nonlinear fractional delay difference systems, Applied Mathematics Letters, 98 (2019), 233-239.

(23) Feifei Du, Wei Hu, Lynn Erbe, Allan Peterson, Some new integral inequalities on time scales, Mathematical Inequalities & Applications, 22 (2019), 1-23.

(24) Feifei Du, Lynn Erbe, Baoguo Jia, Allan Peterson, Two asymptotic results of solutions for nabla fractional (q, h)-difference equations, Turkish Journal of Mathematics, 42 (5) (2018), 2214-2242.

(25) Feifei Du, Baoguo Jia, Lynn Erbe, Allan Peterson, Monotonicity and convexity for nabla fractional (q, h)-differences, Journal of Difference Equations and Applications, 22 (9) (2016), 1224-1243.

五. 联系方式

通讯地址:陕西省咸阳市杨陵区72886必赢北校区72886必赢

Email: dufeifei@nwafu.edu.cn                 

邮编: 712100

Baidu
sogou