一、基本信息
王曌,女,四川绵阳人,副教授,硕士生导师。入选72886必赢“高层次人才支持计划”和“青年拔尖人才岗位”。2017年本科毕业于成都理工大学物理系;2023年毕业于重庆大学物理系,获理学博士学位;2022年至2023年在北京大学-北京石墨烯研究院联合培养;2023年7月至今,72886必赢,副教授。
二、研究方向
面向科技前沿与国家重大需求,力争在国家双碳战略、环境污染治理及物联网分布式能量供给等方面提供有价值的解决方案。围绕摩擦发电机输出能量的最大化及匹配的能量管理设计开展了创新性的研究工作;在单层悬空石墨烯的高效转移以及大面积洁净石墨烯载网制备方面做出了创新性成果。目前主要研究方向有:
1.光催化产氢及有机物降解
2.摩擦纳米发电机输出优化及高效能量管理研究
3.单层悬空石墨烯的高质量转移研究
三、主要学术成果
(1)主持项目
72886必赢引进人才配套科研启动经费,2023年—2028年,在研,主持。
(2)代表性论文
以第一作者及共同一作在 Joule ( Cell 姊妹刊,比肩 Nature Energy 的国际能源顶刊,影响因子46.048,该论文入选 Joule 编辑部评审的2021年度最具影响力的TOP10优秀文章), Energy & Environmental Science , Nature Communications , Materials Today , Nano Energy 等期刊上发表多篇高质量的研究成果。
1. Wang, Z., Liu, W*., He, W., Guo, H., Long, L., Xi, Y., Wang, X., Liu, A*. and Hu, C*. (2021). Ultrahigh Electricity Generation from Low-Frequency Mechanical Energy by Efficient Energy Management. Joule 5 , 441-455 . (Cell姊妹刊,高被引,IF="46.048)
2. Wang, Z., Tang, Q., Shan, C., Du, Y., He, W., Fu, S., Li, G., Liu, A., Liu, W*. and Hu, C*. (2021). Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy & Environmental Science 14 , 6627-6637 .(中科院TOP 1 区,IF="39.15)
3. Wang, Z., Yang, Q., Liu, W., Ran, H., Zhang, C*., Han, X., He, X., Wang, X. and Hu, C*. (2019). Optical porous hollow-boxes assembled by SrSO4/TiO2/Pt nanoparticles for high performance of photocatalytic H2 evolution. Nano Energy 59 , 129-137 .(中科院TOP 1区,IF="17.6)
4. Wang, Z., Liu, W., Hu, J., He, W., Yang, H., Ling, C., Xi, Y., Wang, X., Liu, A. and Hu, C*. (2020). Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy 69 .
5. Liu, W., Wang, Z., Wang, G., Zeng, Q., He, W., Liu, L., Wang, X., Xi, Y., Guo, H., Hu, C*. and Wang, Z. L*. (2020). Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications 11 . (高被引,共同一作,IF="17.763)
6. Liu, W., Wang, Z. and Hu, C*. (2021). Advanced designs for output improvement of triboelectric nanogenerator system. Materials Today 45 , 93-119 . (中科院TOP 1 区,共同一作, IF="39.15)
7. Liu, W., Wang, Z., Wang, G., Liu, G., Chen, J., Pu, X., Xi, Y., Wang, X., Guo, H., Hu, C*. and Wang, Z. L*. (2019). Integrated charge excitation triboelectric nanogenerator. Nature Communications 10 . 高被引
8. He, W., Liu, W., Chen, J., Wang, Z., Liu, Y., Pu, X., Yang, H., Tang, Q., Yang, H., Guo, H*. and Hu, C*. (2020). Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect (vol 11, 4277, 2020). Nature Communications 11 . 高被引
9. Liu, Y., Liu, W., Wang, Z., He, W., Tang, Q., Xi, Y., Wang, X., Guo, H*. and Hu, C*. (2020). Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nature Communications 11 . 高被引
10. Long, L., Liu, W*., Wang, Z., He, W., Li, G., Tang, Q., Guo, H., Pu, X., Liu, Y. and Hu, C*. (2021). High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nature Communications 12 . 高被引
11. Guan, Y., Ji, P., Wan, J., Zhang, D., Wang, Z., Tian, H., Hu, C., Hu, B., Tang, Q. and Xi, Y*. (2020). Ag-modified Fe2O3 nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors. Nanotechnology 31 .
12. Ran, H., Lu, J., Wang, Z., Wang, C., Li, J., Zhang, C., Wang, X., He, X. and Hu, C*. (2020). Two-dimensional Bi2O2CO3/delta-Bi2O3/Ag2O heterojunction for high performance of photocatalytic activity. Applied Surface Science 525 .
13. Li, G., Liu, G., He, W., Long, L., Li, B., Wang, Z., Tang, Q., Liu, W. and Hu, C*. (2021). Miura folding based charge-excitation triboelectric nanogenerator for potable power supply. Nano Research 14 , 4204-4210 .
14. Shan, C., Liu, W., Wang, Z., Pu, X., He, W., Tang, Q., Fu, S., Li, G., Long, L., Guo, H., Sun, J., Liu, A. and Hu, C*. (2021). An inverting TENG to realize the AC mode based on the coupling of triboelectrification and air-breakdown. Energy & Environmental Science 14 , 5395-5405 .
15. Du, Y., Tang, Q., He, W., Liu, W., Wang, Z., Wu, H., Li, G., Guo, H., Li, Z., Peng, Y. and Hu, C*. (2021). Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring. Nano Energy 90 .
16. Li, G., Fu, S., Luo, C., Wang, P., Du, Y., Tang, Y., Wang, Z., He, W., Liu, W., Guo, H., Chen, J. and Hu, C*. (2022). Constructing high output performance triboelectric nanogenerator via V-shape stack and self-charge excitation. Nano Energy 96 .
17. Shan, C., He, W., Wu, H., Fu, S., Tang, Q., Wang, Z., Du, Y., Wang, J., Guo, H*. and Hu, C*. (2022). A High-Performance Bidirectional Direct Current TENG by Triboelectrification of Two Dielectrics and Local Corona Discharge. Advanced Energy Materials.
18. Fu, S., He, W., Tang, Q., Wang, Z., Liu, W., Li, Q., Shan, C., Long, L., Hu, C*. and Liu, H*. (2022). An Ultra-robust and High-Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation. Advanced Materials 34 .
19. Tang, Q., Wang, Z., Chang, W., Sun, J., He, W., Zeng, Q., Guo, H*. and Hu, C*. (2022). Interface Static Friction Enabled Ultra-Durable and High Output Sliding Mode Triboelectric Nanogenerator. Advanced Functional Materials.
20. Wu, H., He, W., Shan, C., Wang, Z., Fu, S., Tang, Q., Guo, H., Du, Y., Liu, W*. and Hu, C*. (2022). Achieving Remarkable Charge Density via Self-Polarization of Polar High-k Material in a Charge-Excitation Triboelectric Nanogenerator. Advanced Materials 34 .
四、联系方式
通讯地址:陕西杨凌邰城路3号 72886必赢
邮箱:zhaowang@nwafu.edu.cn
热烈欢迎对我的研究方向感兴趣、有想法、实验操作能力强的同学报考我的研究生!